China best Single Row Ball Slewing Bearing 062.50.1800.001.49.1504 Worm Gears for Ship Crane hypoid bevel gear

Product Description

Single Row Ball Slewing Bearing 062.50.1800.001.49.1504 Worm Gears For Ship Crane

Four-point contact ball slewing turntable bearings
consist of 2 ring seats. Compact structure, light weight, steel ball and arc track contact at 4 points, can bear axial force, radial force and overturning moment at the same time, has strong dynamic load.

Single row cross roller slewing bearing
Composed of 2 or 3 rings. compact structure, light weight, high manufacturing accuracy, small assembly gap and high requirement for installation accuracy. Rollers are 1:1 cross-arranged.
Can be bear axial force, overturning moment and large radial force at the same time,and widely used in lifting transportation, construction machinery and precesion products.

Double row ball slewing bearings
This kind of bearings can support high static loads with simple structures. They are mainly used in situations with variation load position and direction and continuously rotating. Main applications of this kind of bearings are deck hoisting, mining and material handling etc.

Three row roller slewing bearing
Three row roller bearing able to bear all kinds of loads at the same time, it is the largest 1 of the 4 structural products with large axle and radial dimensions and firm structure. Especially suitable for heavy machinery requiring larger diameter, such as bucket wheel stacker and reclaimer, wheel crane, marine crane, port crane, ladle turret,large tonnage truck crane,heavy machinery and so on.

 

Type • Single row 4 point contact ball slewing bearing 
• Single row crossed cylindrical roller slewing bearings
• Double row ball slewing bearings
•Double row Roller/ball combination slewing bearing
•Three-Row Roller Slew Ring Bearing
Rolling elements Steel ball / Cylinder Roller
Rolling elements Material GCr5/GCr15SiMn/Customized
Bearing Material 50Mn/42CrMo/42CrMo4V /Customized
Cage Material Nylon/ steel /copper
Structure taper pin , Mounting holes,Inner ring ,grease fitting,load plug, seals , roller ,spacer balls or separators
Outer diameter 50-10000mm
Bore size 50-10000mm
Mounting hole Through hole/Tapped hole
Raceway hardness 55-62HRC
Inner and outer ring 
modulation hardness
229-269HB/Customized
Gear type No gear ,Internal gear , External gear.
Embellish grease EP2 lithium lubricating grease
Certificate ABS.BV,DNV,ISO9001,GL,3.1,3.2
Application area Ladle turret,Stacker crane,Bucket wheel machine,Solar heliostat Tracking System,port crane, Cabling machine,tower crane , offshore platform,ferris wheel, Palletizing robot,Rotary metallurgical furnace,can packing machine,Wind blade transporter,shield tunneling machine,tube push bench,excavator
Brand Name LYMC
Place of Origin HangZhou ZheJiang
Warranty 12 months
Payment term T/T is our first choice

Packing details

1,Filling with anti-rust oil
2.Corved with Plastic paper
3.Corved with kraft paper 
4.Corved with Blue tie 
5.Put in wooden box

 


Product Process

Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo
Customization:
Available

|

Customized Request

worm gear

What are the advantages and disadvantages of using a worm gear?

A worm gear offers several advantages and disadvantages that should be considered when selecting it for a specific application. Here’s a detailed explanation of the advantages and disadvantages of using a worm gear:

Advantages of using a worm gear:

  • High gear reduction ratio: Worm gears are known for their high gear reduction ratios, which allow for significant speed reduction and torque multiplication. This makes them suitable for applications that require precise motion control and high torque output.
  • Compact design: Worm gears have a compact design, making them space-efficient and suitable for applications where size is a constraint. The worm gear’s compactness allows for easy integration into machinery and equipment with limited space.
  • Self-locking capability: One of the key advantages of a worm gear is its self-locking property. The angle of the worm thread prevents the reverse rotation of the output shaft, eliminating the need for additional braking mechanisms. This self-locking feature is beneficial for maintaining position and preventing backdriving in applications where holding the load in place is important.
  • Quiet operation: Worm gears typically operate with reduced noise levels compared to other gear types. The sliding action between the worm and the worm wheel teeth results in smoother and quieter operation, making them suitable for applications where noise reduction is desired.
  • High shock-load resistance: Worm gears have good shock-load resistance due to the sliding contact between the worm and the worm wheel teeth. This makes them suitable for applications that involve sudden or intermittent loads, such as lifting and hoisting equipment.
  • Easy installation and maintenance: Worm gears are relatively easy to install and maintain. They often come as a compact unit, requiring minimal assembly. Lubrication maintenance is crucial for optimal performance and longevity, but it is typically straightforward and accessible.

Disadvantages of using a worm gear:

  • Lower efficiency: Worm gears tend to have lower mechanical efficiency compared to some other gear types. The sliding action between the worm and the worm wheel teeth generates higher frictional losses, resulting in reduced efficiency. However, efficiency can be improved through careful design, quality manufacturing, and proper lubrication.
  • Limited speed capability: Worm gears are not suitable for high-speed applications due to their sliding contact and the potential for heat generation. High speeds can lead to increased friction, wear, and reduced efficiency. However, they excel in low to moderate speed applications where high torque output is required.
  • Heat generation: The sliding action between the worm and the worm wheel generates friction, which can result in heat generation. In high-load or continuous-duty applications, this heat buildup can affect the efficiency and longevity of the system. Proper lubrication and heat dissipation measures are necessary to mitigate this issue.
  • Less suitable for bidirectional motion: While worm gears offer excellent self-locking capabilities in one direction, they are less efficient and less suitable for bidirectional motion. Reversing the direction of the input or output shaft can lead to increased friction, reduced efficiency, and potential damage to the gear system.
  • Lower accuracy in positioning: Worm gears may have lower accuracy in positioning compared to some other gear types, such as precision gear systems. The sliding contact and inherent backlash in worm gears can introduce some degree of positioning error. However, for many applications, the accuracy provided by worm gears is sufficient.
  • Potential for wear and backlash: Over time, the sliding action in worm gears can lead to wear and the development of backlash, which is the play or clearance between the worm and the worm wheel teeth. Regular inspection, maintenance, and proper lubrication are necessary to minimize wear and reduce backlash.

When considering the use of a worm gear, it’s essential to evaluate the specific requirements of the application and weigh the advantages against the disadvantages. Factors such as torque requirements, speed limitations, positional stability, space constraints, and overall system efficiency should be taken into account to determine if a worm gear is the right choice.

worm gear

Can worm gears be used in automotive applications?

Yes, worm gears can be used in certain automotive applications. Here’s a detailed explanation of their use in the automotive industry:

1. Steering Systems: Worm gears are commonly used in automotive steering systems, particularly in older vehicles. They can provide the necessary torque and precision for steering control. The self-locking feature of worm gears is advantageous in steering applications as it helps maintain the desired steering position even when external forces are applied. However, it’s important to note that many modern vehicles have transitioned to other steering mechanisms such as rack and pinion for improved efficiency and performance.

2. Window Regulators: Worm gears can be found in power window regulator systems in some vehicles. They help convert rotational motion into linear motion, allowing for the smooth and controlled movement of windows. Worm gears in window regulators are often paired with a mechanical linkage system to distribute the motion to multiple windows.

3. Convertible Top Mechanisms: In convertible vehicles, worm gears can be utilized in the mechanisms that raise and lower the convertible top. The high torque capabilities of worm gears make them suitable for these applications, as they can effectively handle the load of the top and ensure smooth and reliable operation.

4. Accessory Drives: Worm gears can be employed in accessory drives within the automotive engine compartment. They can be used to transfer power from the engine to various accessories such as water pumps, fuel pumps, and air compressors. However, it’s important to note that other power transmission mechanisms such as belts and pulleys or gear drives are more commonly used in modern automotive accessory drive systems due to their higher efficiency and compact design.

5. Limited-Slip Differentials: Worm gears can be incorporated into limited-slip differentials in some automotive applications. Limited-slip differentials distribute torque between the wheels to improve traction and stability. Worm gears can provide the necessary torque multiplication and torque biasing capabilities required for limited-slip differentials.

While worm gears can be found in these automotive applications, it’s important to consider that other power transmission mechanisms such as spur gears, bevel gears, and belt drives are more commonly used in modern automotive designs. These alternatives often offer higher efficiency, compactness, and better performance characteristics for automotive applications. Additionally, advancements in technology and the pursuit of lightweight and efficient designs have led to the adoption of alternative power transmission systems in many automotive applications.

Overall, while worm gears have a place in certain automotive applications, their use is more limited compared to other power transmission mechanisms commonly employed in the automotive industry.

worm gear

What are the benefits of using a worm gear mechanism?

Using a worm gear mechanism offers several benefits in various applications. Here are some of the advantages:

  • High Gear Reduction: Worm gears provide high gear reduction ratios, allowing for significant speed reduction and torque multiplication. This makes them suitable for applications where a small input speed or high torque output is required.
  • Compact Design: Worm gears have a compact design, with the worm and worm wheel positioned at right angles to each other. This makes them space-efficient and suitable for applications where size and weight limitations exist.
  • Self-Locking: Worm gears exhibit a self-locking characteristic due to the angle of the worm’s helical thread. This means that the worm can drive the worm wheel, but the reverse is not true. The self-locking feature allows worm gears to hold position without additional braking mechanisms, making them suitable for applications that require mechanical holding or braking capabilities.
  • Quiet Operation: Worm gear mechanisms are known for their quiet operation. The helical nature of the worm’s thread and the meshing with the worm wheel teeth help reduce noise and vibration, resulting in smoother and quieter performance.
  • Shock Load Resistance: Worm gears are capable of handling moderate to high shock loads due to their inherent design. The sliding action between the worm and worm wheel allows the gear system to absorb and distribute sudden impacts and loads effectively.
  • Versatile Mounting Options: Worm gears can be mounted in various orientations, including horizontal, vertical, and inclined positions, providing flexibility in design and installation.
  • High Torque Transmission: The design of worm gears allows for efficient transmission of high torque. This makes them suitable for applications that require heavy-duty torque requirements, such as lifting mechanisms, conveyor systems, and machine tools.
  • Simple Lubrication: Worm gears typically require lubrication to reduce friction and wear. However, compared to some other gear types, worm gears have relatively simple lubrication requirements due to the sliding action between the worm and worm wheel. Proper lubrication helps extend the lifespan of the gear system and maintain its performance.

These benefits make worm gear mechanisms well-suited for a wide range of applications, including automotive systems, industrial machinery, elevators, robotics, and more. However, it’s important to consider the specific requirements and limitations of each application to ensure the optimal use of worm gears.

China best Single Row Ball Slewing Bearing 062.50.1800.001.49.1504 Worm Gears for Ship Crane hypoid bevel gearChina best Single Row Ball Slewing Bearing 062.50.1800.001.49.1504 Worm Gears for Ship Crane hypoid bevel gear
editor by CX 2024-04-08